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Abstract—While more and more consumer drones are abused
in recent attacks, there is still very little systematical research
on countering malicious consumer drones. In this paper, we
focus on this issue and develop effective attacks to common
autopilot control algorithms to compromise the �ight paths of
autopiloted drones, e.g., leading them away from its preset
paths. We consider attacking an autopiloted drone in three
phases: attacking its onboard sensors, attacking its state es-
timation, and attacking its autopilot algorithms. Several �rst-
phase attacks have been developed (e.g., [1]–[4]); second-phase
attacks (including our previous work [5], [6]) have also been
investigated. In this paper, we focus on the third-phase attacks.
We examine three common autopilot algorithms, and design
several attacks by exploiting their weaknesses to mislead a drone
from its preset path to a manipulated path. We present the
formal analysis of the scope of such manipulated paths. We
further discuss how to apply the proposed attacks to disrupt
preset drone missions, such as missing a target in searching an
area or misleading a drone to intercept another drone, etc. Many
potential attacks can be built on top of the proposed attacks.
We are currently investigating different models to apply such
attacks on common drone missions and also building prototype
systems on ArduPilot for real world tests. We will further
investigate countermeasures to address the potential damages.

Index Terms—counter drone, autopilot, navigation

I. I NTRODUCTION

While they have enabled many new applications [7], con-
sumer drones have been abused in many recent attacks [8],
[9]. One recent case was at the UK's second largest airport.
Malicious drones disturbed the normal operations during the
busy 2018 Christmas season for three days. Clearly, we have
to build effective solutions to stop such abuses.

Existing counter-drone solutions usually have two steps:
we �rst identify an unauthorized drone entering a restricted
airspace and then apply counter-drone solutions to disrupt or
capture it. A typical setting is shown in Fig. 1. We set up
a perimeter and apply drone detection schemes, using Radio
Frequency (RF) communications, radars, acoustic monitor-
ing, or image processing [10]–[12] to discover incoming
drones. We focus on the second step in this paper: how to
systematically counter the invading drones. In particular, in
the no-�y zone, we assume that remote manual control is
disabled and the malicious drone is on autopilot; we can
apply the �rst-phase sensor attacks and the second-phase state
estimation attacks to inject fake states into the autopilot nav-
igation control. By examining the existing common autopilot

algorithms, we propose several third-phase attacks to mislead
invading drones.

Most existing counter-drone systems have been proposed
by industry with straightforward solutions, such as jamming
drone control channels or GPS receivers to trigger a drone
switching to a default failsafe mode (e.g., landing when lost
GPS signals over 10s), or capturing a drone with a net, etc.
Such direct physical attacks work well when dealing with
unsophisticated drone operators; but they also show serious
limitations, e.g., they usually do not consider collateral
damages. If a drone carries a bomb, we should not make
it land in a protected critical space, e.g., an of�ce building.
The best solution in such situation is to lead the drone �y
away from the target as far as possible. We have conducted a
broad literature survey, and have not seen systematic research
to address such issues. Therefore, it is urgent to investigate
more intelligent counter-drone solutions.

Ideally, we want to precisely control the �ight path of an
unauthorized drone, e.g., making it miss its preset waypoints
in its mission plan. In this paper, we consider attacking an au-
topiloted drone in three phases. The�rst-phase attacks focus
on compromising the sensor readings of an autopiloted drone.
Several �rst-phase attacks have shown that such attacks are
completely feasible (e.g., [1]–[4]). Based on such �rst-phase
attacks, we have proposedthe second-phase attacks[5],
[6], e.g., exploiting the weaknesses in common drone state
estimation algorithms. In this paper, we focus onthe third-
phase attacksby utilizing the compromised state estimation
to fool common autopilot algorithms to make a drone deviate
from its �ight paths. We do not assume that we can remotely
tamper actuators.

Our Goal. Our goal is to compromise drone autopilot con-
trol algorithms to manipulate �ight paths. We have conducted

Fig. 1: Attack Model.



extensive investigation on popular open-source �ight control
systems (such asArduPilot and Paparazzi), and discovered
multiple weaknesses in common autopilot control algorithms.
Because sensors often have occasional errors, drone control
systems usually use state estimation algorithms to address
these errors. Kalman Filter (KF) and its variants are the most
popular estimation algorithms in drone control systems. A
drone autopilot system is dependent on these state estimations
to adjust �ight parameters. We have proposed several second-
phase attacks to manipulate state estimation algorithms in our
previous papers. In this paper, we focus on exploiting the
weakness of autopilot algorithms to manipulate a drone in
real time in order to make it follow (or not follow) certain
�ight paths, e.g., away from a target or missing certain points
in a search sweep. To our best knowledge, we have not seen
similar work in this direction.

The remainder of this paper is organized as follows. We
will introduce related background of autopilot control in Sec.
2. In Sec. 3, we will then present several attacks on autopilot
control algorithms, and analyze the scope of feasible paths
under such attacks. We will further discuss how to apply the
attacks to disrupt drone missions, and show basic simulation
evaluations in Sec. 4. We conclude this paper and discuss our
current and future research in Sec. 5.

II. D RONE AUTOPILOT BACKGROUND

A. Drone Control Model

We illustrate a common automatic control loop of a drone
in Fig. 2. The control system periodically reads physical mea-
surements from sensor readings, and then estimate system
states for further control decisions via sensor fusion schemes;
based on the estimated system states, the autopilot component
makes control adjustments of actuators to achieve control
movements.

Autopilot
State 

Estimation

Sensors Actuators 

Fig. 2: Common Drone Control Loop.

To deal with an evading drone, we need attack schemes
to affect its �ight path based on our goals, e.g., making it
miss its preset waypoints. As we mentioned in the above, we
consider such attacks as thethird-phase attacksthat exploit
the weakness of drone autopilot control algorithms. These
third-phase attacks are based on the�rst-phase attackson
sensors and thesecond-phase attackson state estimation
algorithms. The �rst-phase attacks focus on compromising
the sensor readings of a drone. By understanding how state
estimation algorithms use these sensor data, we can �gure
out how to manipulate these readings such that we can fool

the state estimation algorithms of a drone as we need in
the second-phase attacks. Similarly, exploiting the weakness
of drone �ight control algorithms, we know what states
will mislead the drone movement control in the third-phase
attacks. In this paper, we assume that sensor attacks help us
in state estimation and autopilot attacks; we do not focus on
sensor attacks. Attacking sensor readings has been an active
research area in recent years, and existing sensor attacks
achieves good results in manipulating IMU sensors [3], [4],
GPS [1], [2], etc. Therefore, in this paper, we assume that
�rst-phase attacks help us compromise sensors, and second-
phase attacks (proposed by other researchers and us [6]) help
us mislead the state estimation algorithms. We will focus on
the third phase attacks.

B. Autopilot Control Algorithms in ArduPilot

In this section, we introduce the basic mechanism for
autopilot control, which adjust drone actions to follow a pre-
set �ight path with speci�c waypoints. Most popular autopi-
lot control algorithms use GPS-based waypoints navigation.
Therefore, the path control of a drone usually includes:
adjustment of roll and pitch for desired attitude; adjustment of
heading and altitude for trajectory or waypoints tracking; and
waypoint navigation. The autopilot system usually consists of
two basic controllers: An altitude controller makes sure the
drone at the correct altitude, and a velocity/heading controller
navigates the drone to �y through the desired waypoints. We
focus on both controllers in this work to change drone �ight
paths. In this paper, we investigate three autopilot navigation
algorithms used in the popular open source �ight control
systemArduPilot. ArduPilot uses the Proportional Integral
Derivative (PID) method for the controller, which adjust the
actuators in each time step to achieve the preset target points.

The Basic AutoPilot Algorithmis the fundamental auto-
navigation control algorithm. As shown in Fig. 3a, the
controller calculates the target bearing in every time step
based on the current position of the drone and the target
position. The controller will then navigate the drone towards
the target with this bearing and a desired velocity.

The Linear Track-based Navigation Algorithmleads a
drone to a target location following the linear track from a
source to a destination, as shown in Fig. 3b. To make sure that
the drone �ies along the track, the controller will calculate the
track error (the distance between the drone's current position
and the track) in every time step, and limit the error within
a small range. As a result, a drone will not deviate from the
track too far. Usually, the rate to correct the track error (i.e.,
moving the drone back to the track) is stable as a constant.
To lead the drone to reach the destination, the controller will
calculate the drone's speed along the track and stabilize it at
a desired one.

The Spline Track-based Navigation Algorithmmakes a
drone �y smoothly passing through waypoints during a �ight.
To achieve this, one simple solution is to make a drone slow
down when it approaches a waypoint. However, this may
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Intercepting another nearby drone
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Fig. 17: Intercepting another nearby drone.

Simulation Settings. The attack simulator is written in
MATLAB. In this simulation, we assume that the two drones:
compromised drone C and victim drone V follow pre-set
�ight tracks under the linear track-based autopilot algorithm.
In addition, we are able to manipulated the position esti-
mation of the C precisely. The injection on the position
estimation is set to be at most 5m/timestep. Furthermore,
the noise of each state estimation is assumed to follow
N (0; 0:012). In the attack, we assume that we have the
knowledge of the pre-set �ight track of C and V. In particular,
the source and the original destination for C is set to be
(50 m, 100 m) and (150m, 100 m), while the source and
the original destination for V is (50m, 50m) and (150m, 50
m) in a 2D plane. At time 0, they are both at their original
sources. For the linear track-based autopilot algorithms on
both drones, we assume that the maximum speed along the
track and towards the track for track error correction is
10 m/timestep and 2.5m/timestep, respectively. Then our
attack goal is: by attack the autopilot controller of C, we
would like to make C and V collide,

Simulation Results.Fig. 17 shows the simulation results
of intercepting another nearby drone under the linear track-
based autopilot algorithm. The red line with circles shows
the �ight path of C from the system's view while the black
line with triangles represents its actual path. In addition, the
cyan line with stars is the �ight path of V. Since the track
of V is under the one of C, we will attack C such that
C �y along the bottom edge of its position scope, where
C will intercept V at the earliest time. At each time step,
the attackers put a maximum positive injection on the y-
axis. Then the autopilot controller will direct the drone to
�y towards the "destination", which makes it move towards
bottom right. Under this attack, at time step 10, C and V will
collide at (150m, 50 m).

V. CONCLUSIONS

In this paper, we have focused on compromising the
�ight paths of autopiloted drones and presented several
attacks to three common autopiloted navigation algorithms.
Assume the �rst-phase sensor attacks and the second-phase

state estimation attacks can help us build precise position
injections, we have exploited the weaknesses of existing
autopilot navigation algorithms to mislead a drone from its
preset path to a manipulated path. We have presented the
formal analysis of the scope of such manipulated paths. We
have further discussed how to apply the proposed attacks to
disrupt preset drone missions, such as missing a target in
searching an area or misleading a drone to intercept another
drone, etc. Many potential attacks can be built on top of
the proposed attacks. We are currently investigating different
models to apply such attacks on common drone missions and
also building prototype systems on ArduPilot for real world
tests. We will further investigate countermeasures to address
the potential damages.
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